MATHEMATICS METHODS

MAWA Semester 1 (Unit 3) Examination 2020 Calculator-free

Marking Key

© MAWA, 2020

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• June 12th the end of week 7 of term 2, 2020

SEMESTER 1 (UNIT 3) EXAMINATION

Section One: Calculator-free

(50 Marks)

CALCULATOR-FREE

Question	1	(a)
----------	---	-----

(2 marks)

Solution	
$f(x) = (3 + x^3)^{\frac{1}{2}}$	
$f'(x) = \frac{1}{2}(3+x^{3})^{\frac{-1}{2}}(3x^{2})$	
$=\frac{3x^2}{2\sqrt{3+x^3}}$	
Mathematical behaviours	Mark
applies chain rule	1
obtains correct result	1

Question 1(b)

(2 marks) Solution $z = t^2 \cos(2t - 1)$ $\frac{dz}{dt} = \cos(2t - 1) \times 2t + t^2 \times (-2)\sin(2t - 1))$ $= 2t\cos(2t-1) - 2t^{2}\sin(2t-1)$ Mathematical behaviours Marks 1 differentiates cos term correctly • 1 applies product rule and states result

Question 1(c)

(3 marks)

Solution	
$y = 5\sin(4x+3)$	
$\frac{dy}{dx} = 5\cos(4x+3^{2}+16\times(5\sin(4x+3))^{2})$	
$= 400\cos^2(4x+3) + 400\sin^2(4x+3)$	
$= 400(\cos^2(4x+3) + \sin^2(4x+3)) \qquad \dots (*)$	
= 400 $\therefore \cos^2(4x+3) + \sin^2(4x+3) = 1$	
Mathematical behaviours	Marks
differentiates correctly	1
substitutes and simplifies to (*)	1
evaluates correctly, stating Pythagorean identity	1

2

Question 2(a)

Solution	
$f(x) = 0 \Longrightarrow x^3 - 12x = 0$	
$\Rightarrow x(x^2-1)=0$	
$\Rightarrow x = 0, \pm \sqrt{12}$	
Mathematical behaviours	Marks
• equates function to 0 and obtains $x = 0$	1
• states $x = \pm \sqrt{12}$	1

Question 2(b)

Solution	
$f(x) = x^3 - 12x$	
$f'(x) = 3x^2 - 12 = 0 \Rightarrow x = \pm 2$ $f(2) = -16, f''(2) = 12 > 0 \Rightarrow \min$	
$f''(x) = 6x$ $f(-2) = 16, f''(-2) = -12 \Rightarrow \max$	
$f''(x) = 0 \Rightarrow x = 0, f(0) = 0 \Rightarrow$ point of inflection	
Mathematical behaviours	Marks
differentiates, equates to 0 and solves	1
• obtains correct y values of the stationary points	1
• uses second derivative test (or sign test) to determine nature of stationary	1
points	
locates point of inflection	1

Question 2(c)

(1 mark)

Solution	
$f(x) = x^3 - 12x$	
f(-4) = -64 + 48 = -16	
f(4) = 64 - 48 = 16	
\therefore maximum is 16 since $f(-2)$ is also 16	
Mathematical behaviours	Marks
• determines $f(4)$ and concludes maximum	1

Question 2(d)

3

(2 marks)

SEMESTER 1 (UNIT 3) EXAMINATION

Question 3(a)

Ruestion 3(a)	(1 mark)
Solution	
x=2,	
$\frac{dc}{dx} = 2(8+1)^{\frac{1}{2}} = 6$	
Mathematical behaviours	Mark
states correct answer	1

Question 3(b)

Solution	
$\int_{0}^{2} x (2x^{2} + 1)^{\frac{1}{2}} dx$	
$=\frac{1}{4}\int_{0}^{1}4x(2x^{2}+1)^{\frac{1}{2}}dx$	
$=\frac{1}{4}\left[\left(2x^{2}+1\right)^{\frac{3}{2}}\cdot\frac{2}{3}\right]_{0}^{2}$	
$=\frac{1}{6}(27-1)$	
$=\frac{13}{3}$	
Mathematical behaviours	Marks
• states the change as $\int_{0}^{2} x (2x^{2}+1)^{\frac{1}{2}} dx$	1
anti-differentiates correctly	1
substitutes correct limits of integration	1
determines correct answer	1

Question 4(a)

(2 marks)

Solution	
$k + 3k + 5k + 4k = 1 \Longrightarrow k = \frac{1}{13}$	
Mathematical behaviours	Marks
states the sum of probabilities is 1	1
deduces k value	1

Question 4(b)

Question 4(b)	(2 marks)
Solution	
$P(X > 2) = 1 - \frac{1}{13} = \frac{12}{13}$	
Mathematical behaviours	Marks
states an expression to calculate required probability	1
determines probability	1

(4 marks)

CALCULATOR-FREE

Question 4(c)

Solution $P(X \le 5 \mid X > 2) = \frac{\frac{8}{13}}{\frac{12}{13}} = \frac{8}{12} = \frac{2}{3}$ Mathematical behavioursMarks• writes fraction with the correct denominator• obtains simplified result1

Question 5(a)

Solution	
(i) $\int_{0}^{2\pi} 2\sin(4x) dx$ $= \left[\frac{-2\cos(4x)}{4} \right]_{0}^{2\pi}$ $= -\frac{1}{2} [\cos 8\pi - \cos 0]$ $= 0$ (ii) $\int \frac{x + \sqrt{x}}{x} dx$ $= \int 1 + x^{\frac{-1}{2}} dx$ $= x + 2\sqrt{x} + c$ Methematical behaviour	Maria
Mathematical behaviours	Marks
 states anti-derivative evaluates result rewrites fraction as sum of two functions 	1 1 1
• anit-dimerentiates including <i>c</i>	I

(2 marks)

(4 marks)

Question 5(b)

(3 marks)

Solution	
(i) $\int_{1}^{6} f(x) dx = -\int_{4}^{1} f(x) dx + \int_{4}^{6} f(x) dx$ $= -1 + 4$	
$= 3$ (ii) $\int_{1}^{1} \int_{1}^{1} \int_{$	
$\int_{4} (2f(x)+1) dx = 2 \int_{4} f(x) dx + \int_{4} 1 dx$ $= 2(1) + [x]_{4}^{1}$	
= 2 + (1 - 4)	
Mathematical behaviours	Marks
 (i) applies linearity of integrals, swaps bounds of integration and determines the correct result 	1
 applies linearity of integrals correctly integrates correctly and calculates the result 	1 1

7

CALCULATOR-FREE SEMESTER 1 (UNIT 3) EXAMINATION

Question 5(c)

(5 marks)

Solution	
$y = \frac{1}{e^{2x} + 1} = \left(e^{2x} + 1\right)^{-1}$	
$\frac{dy}{dx} = \frac{-2e^{2x}}{\left(e^{2x} + 1\right)^2} = -2\left(\frac{e^x}{\left(e^{2x} + 1\right)}\right)^2$	
$\int \frac{dy}{dx} dx = \int -2\left(\frac{e^x}{\left(e^{2x}+1\right)}\right)^2 dx$	
$ie \qquad y+C = -2\int \left(\frac{e^x}{\left(e^{2x}+1\right)}\right)^2 dx$	
$ie\frac{1}{e^{2x}+1} + C = -2\int \left(\frac{e^x}{(e^{2x}+1)}\right)^2 dx$	
$ie\left(\frac{-1}{2}\right)\frac{1}{e^{2x}+1}+C=\int\left(\frac{e^x}{\left(e^{2x}+1\right)}\right)^2dx \Rightarrow A=\frac{-1}{2}$	
Mathematical behaviours	Marks
applies the chain rule to the derivative	1
• differentiates e^{2x} correctly	1
recognises application of the Fundamental Theorem	1
 factors out -2 and re-writes fraction involving e^{2x} in numerator and denominator as one fraction squared 	1
• multiplies both sides of expression by $-\frac{1}{2}$ to obtain desired result	1

Question 6(a)

(3 marks)

Solution	
$y = \frac{8x}{(x-1)^2} \Longrightarrow \frac{dy}{dx} = \frac{(x-1)^2 \cdot 8 - 8x \times (2)(x-1)}{(x-1)^4}$	
$=\frac{8(x-1)-16x}{(x-1)^{3}} \Rightarrow c=1, d=-1$	
$=\frac{-8x-8}{(x-1)^3} \Rightarrow a=b=-8.$	1
Mathematical behaviours	Marks
applies quotient rule	1
• differentiates both parts correctly and states the value of c and d	1
• simplifies result and states value of <i>a</i> and <i>b</i>	1

Question 6(b)

(2 marks)

Solution	
Parallel to x axis $\Rightarrow \frac{dy}{dx} = 0 \Rightarrow \frac{-8x-8}{(x-1)^3} = 0 \Rightarrow x = -1 \Rightarrow y = \frac{-8}{4} = -2.$	
So the coordinates of B are $(-1, -2)$	
Mathematical behaviours	Marks
equates derivative to 0 and solves	1
 states co-ordinates of B 	1

Question 7(a)

Solution		
It is the area between the two curves from $x = 0$ to $x = \pi$.		
Mathematical behaviours	Marks	
 states it is the area between the two given curves 	1	
• states the area is from $x = 0$ to $x = \pi$	1	

Question 7(b)

(3 marks)

(2 marks)

Solution	
$\int \sin x - x e^{-x^2} dx = -\cos x - \left[-\frac{1}{2} \int -2x e^{-x^2} dx \right]$	
$= -\cos x + \frac{1}{2}e^{-x^2} + c$	
Mathematical behaviours	Marks
anti-differentiates sin x correctly	1
 anti-differentiates xe^{-x²} correctly includes constant of integration 	1 1